Atoms and Molecules: Chemical Reactions
What defines a chemical reaction?

Part 1: Wet Lab.
Discuss and record preconceptions about chemical reactions. Then share safety rules.

A) Safety. Listen to the safety rules for today’s experiment. Write one of them down here:

Answers will vary: no tasting, wear gloves and goggles, waft to smell, work over the tray.

B) Observations. Write down your observations of the three substances:

- Baking soda – powdery, white, fluffy, solid, no odor, small pieces
- Calcium chloride – hard, white, solid, no odor, crunchy
- Phenol red solution – liquid, red, like cough syrup, like water.

C) Procedure. Class should do each step together.

- Step 1. Put 1 teaspoon of baking soda into a sealable bag.
- Step 2. Put 2 teaspoons of calcium chloride into the same bag. Ask students if anything is happening yet.
- Step 3. Place a test tube with 10 mL of phenol red solution into the bag and hold it upright. Teacher demonstrates first. One partner holds the tube. The other will remove the top in the next step.
- Step 4. Remove the top of the tube. While holding the tube upright, squeeze all the air out of the bag and seal the bag. (The test tube will stay in the bag.) Have your partner make sure the bag is well sealed.
- Step 5. Tip the tube of phenol red solution onto the solids. Mix gently from the outside of the bag with your fingertips. (You can let the test tube fall to the bottom.)

D) Results. Write down your observations of the reaction:

- It got hot! foamy, yellow, like eggs, made a gas (CO₂), smells like plastic, bubbly...

Share observations, then demonstrate flame test.

NOTE! Inform students that if their bags are filling with gas, they should open them a little!!
E) Further Experiments. (optional)
Sections E and F will take a whole extra 45 minute period. You may wish to skip to the BIG conclusion and section G.
You will now do 2 more experiments of your own design to figure out which reactants are required to produce the heat, gas, or color change.

<table>
<thead>
<tr>
<th>EXPERIMENT 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circle your choices:</td>
</tr>
<tr>
<td>Write down what happened. Were heat, gas, or a color change produced?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EXPERIMENT 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circle your choices:</td>
</tr>
<tr>
<td>phenol red solution</td>
</tr>
<tr>
<td>Write down what happened. Were heat, gas, or a color change produced?</td>
</tr>
</tbody>
</table>

F) Class Conclusions from Further Experiments.
Mixing **calcium chloride** and one of today’s liquids ______ produced heat.
Mixing **phenol red** and one of today’s chemicals ______ produced a color change.
Mixing **calcium chloride, baking soda, one of today’s liquids** ______ produced a gas.
Phenol red turns yellow below a pH of 6.6 (indicating an acid) and turns pink above pH of 8.0 (indicating a base) It is in aqueous solution, so in addition to the phenolsulfonphthalein you are adding water to the reaction.
Not all chemical reactions produce heat, a color change, or a gas. The one thing that defines all chemical reactions is that NEW substances are produced.

The BIG Conclusion: A chemical reaction produces NEW substances!

G) Reactants and Products.
What did we start with, and what are the new substances that we made today?

<table>
<thead>
<tr>
<th>Reactants (What we put in the bag)</th>
<th>Products (What ended up in the bag)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. calcium chloride</td>
<td>1. carbon dioxide (CO₂)</td>
</tr>
<tr>
<td>2. baking soda</td>
<td>2. chalk</td>
</tr>
<tr>
<td></td>
<td>3. water (H₂O)</td>
</tr>
<tr>
<td></td>
<td>4. salt</td>
</tr>
</tbody>
</table>

The water was not a reactant, so you write it above the arrow. (It was a solvent, and allowed the other molecules to separate, so that the atoms could recombine in new ways.) The phenol red was also not a reactant; it was an indicator of pH.
Matter is anything that has mass and takes up space. **Answer will vary.**

There are 3 major types of matter: elements, compounds, and mixtures.

Examples of matter are: a hat, pencil, trees, me. Is air matter? Y N

1) **Element** - a pure substance that has only one kind of atom in it.

Examples of elements:
- oxygen O
- iron Fe
- chlorine Cl

Different colored LEGO bricks represent different elements.

These bricks are black. What element do they represent? carbon

Atom - the smallest unit of an element. Atoms can exist either alone or in combination with other atoms.

Molecule – a combination of atoms bonded together. It comes from a Latin word meaning “little lump.”

Correct student molecules so that they all look alike.

2) **Compound** - a pure substance made up of 2 or more different kinds of atoms bonded together. New properties appear.

Examples of compounds:
- water H₂O
- salt NaCl
- carbon dioxide CO₂

LEGO compounds are represented by bricks bonded (clicked) together.

Make the compound carbon dioxide. The chemical formula is CO₂.

Now make a water molecule. What might it look like? Students may connect 2 water molecules together and incorrectly call it ice.

Explain that this makes a new compound, H₂O₂.

3) **Mixture** - a combination of two or more pure substances (elements or compounds) that can be separated by physical methods. The substances keep their original properties.

Examples of mixtures:
- salt water, brass (copper and zinc), iron filings and sand, dry calcium chloride and baking soda

Different LEGO compounds (and/or free bricks) are near each other, but not “clicked” together.

Make some carbonated water (soda). It is a mixture of CO₂ and H₂O. Could you still separate the molecules? How?

Yes. Open bottle and let the CO₂ escape! The soda will “go flat.”
Matter can change in appearance. Is it a physical change or a chemical change? Here’s how to decide: *Answers may vary:*

<table>
<thead>
<tr>
<th>4) Physical change - molecules are the same before and after the change, although the matter may look different.</th>
<th>5) Chemical change - new and different molecules are formed.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examples: dissolving</td>
<td>LEGO compounds break apart, and the atoms recombine, or “re-click”.</td>
</tr>
<tr>
<td>cutting paper, breaking pencil</td>
<td>Examples: today’s reaction</td>
</tr>
<tr>
<td>freezing, mixing</td>
<td>rusting</td>
</tr>
<tr>
<td>digesting food</td>
<td>Hints:</td>
</tr>
<tr>
<td>Hints:</td>
<td>1) All chemical reactions are chemical changes.</td>
</tr>
<tr>
<td>1) Physical changes include making mixtures, dissolving one thing in another, and cutting or breaking something.</td>
<td>2) New properties appear.</td>
</tr>
<tr>
<td>2) All changes of state are physical changes. A water molecule is the same water molecule when it is ice, when it is liquid water, and when it is water vapor in the air.</td>
<td>3) The bonds between the atoms are broken and the atoms recombine in new ways.</td>
</tr>
</tbody>
</table>

Demonstrate water changing state by moving a few LEGO molecules around:
- Ice: very slowly and close together,
- Water: faster and further apart
- Boiling water and water vapor: even faster and further apart. Students love it if you allow the molecules to fly into the air as vapor.

The carbon dioxide gas was produced through the chemical reaction in the bag. Be sure students don’t misinterpret it as a change of state.
B) Modeling a chemical reaction.

Directions:
1) Write the formulas for the molecules on the lines below. Check for subscripts, capitalization, and spacing.
2) Build and place each LEGO molecule on its formula using the “Chemical Reactants” and “Chemical Products” cards.

It is important for students to put all other bricks away before transforming their chemical reactants into products. They should notice that no extra atoms were needed, and none were left over. Emphasize the point that chemical reactions don’t destroy or create matter. Atoms are simply rearranged to make new products. Reinforce this idea by crossing off each atom first on the reactant side, and then the product side of the page below.

Reactants
(What we put in the bag)

\[
\begin{align*}
\text{NaHCO}_3 & \quad \text{baking soda molecule} \\
\text{NaHCO}_3 & \quad \text{baking soda molecule} \\
\text{CaCl}_2 & \quad \text{calcium chloride molecule}
\end{align*}
\]

Some students may notice that there are 2 molecules of baking soda and only one of calcium chloride. This is the opposite of the number of TEASPOONS of the reactants. You added 2 teaspoons of calcium chloride because of the larger size of the balls of calcium chloride. However, when thinking about the molecular structure and balancing the equation, you actually need more baking soda molecules than calcium chloride molecules.

Products
(What ended up in the bag)

\[
\begin{align*}
\text{NaCl} & \quad \text{salt molecule} \\
\text{NaCl} & \quad \text{salt molecule} \\
\text{CaCO}_3 & \quad \text{chalk molecule} \\
\text{CO}_2 & \quad \text{carbon dioxide molecule} \\
\text{H}_2\text{O} & \quad \text{water molecule}
\end{align*}
\]

Look! Different molecules have appeared in the bag!
C) Practice Writing Chemical Formulas.

A chemical formula is an easy way to tell what atoms are present in a compound.

Use the “Atom Key” to find the **chemical symbol** for each element.

It is important to write your formula using the correct uppercase or lowercase letters. The subscript number refers to the atom before it. Remember that “H₂O” means there are 2 hydrogen atoms and 1 oxygen atom. We write the subscript 2 for the hydrogen but it is unnecessary to write the 1 after the oxygen.

Chemists have a complicated set of rules about the order of atoms in their formulas. For this activity, we’ll keep it simple, and list the atoms in order starting from the top of the Atom Key.

Directions.

1) Watch your teacher demonstrate how to write a formula.

2) Build a compound with less than 10 LEGO bricks. (Don’t worry about whether it would be a real compound. Build any shape/color you like!)

3) Write out the formula for YOUR compound here (write the symbols in the order of the Atom Key, from top to bottom):

 Answers will vary but will look something like: $\text{H}_2\text{Na}_2\text{C}_2\text{NO}_2$

4) Trade your compound with your teammate and write out the formula for your TEAMMATE’s compound here:

 Another sample: $\text{Na}_5\text{Ca}_2\text{C}$

 Compare answers with your teammate. Do you agree? **Y/N**

5) Build a second molecule and name it.

 My formula

 My Teammate’s formula

Look! These formulas follow more complicated rules but are still neat to see!

<table>
<thead>
<tr>
<th>Chemical Formula</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₃COOH</td>
<td>is the formula for vinegar!</td>
</tr>
<tr>
<td>C₁₉H₁₄O₅S</td>
<td>is the formula for phenolsulfonphthalein or phenol red!</td>
</tr>
<tr>
<td>CH₄</td>
<td>is the formula for methane gas!</td>
</tr>
<tr>
<td>C₆H₁₂O₆</td>
<td>is the formula for glucose!</td>
</tr>
<tr>
<td>NaOCl</td>
<td>is the formula for bleach!</td>
</tr>
</tbody>
</table>